Bonded Slab Post-Tensioning

Stressing Anchorage VSL Type SO

For proper design and detailing of anchorage zones and related reinforcement, refer to the VSL Publication "Detailing for Post-Tensioning". The arrangement shown here is common for slabs in buildings.

Table

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>J</th>
<th>Kmin</th>
<th>Lmin</th>
<th>M</th>
<th>N</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-41</td>
<td>13.00</td>
<td>6.62</td>
<td>11.25</td>
<td>4.90</td>
<td>3.00</td>
<td>5.00</td>
<td>K1.2</td>
<td>3.00</td>
<td>4.75</td>
<td>1.5 x K</td>
<td>#4</td>
<td>#5</td>
<td>13.88</td>
</tr>
</tbody>
</table>

Other sizes available on request

Dimensions in inches.

- Nominal concrete cylinder strength at 28 days: 4,000 psi (28 MPa).
- Maximum prestressing force may be applied when concrete reaches a cylinder strength of 80% of its nominal strength or 3,500 psi (24 MPa) whichever is less.

For proper design and detailing of anchorage zones and related reinforcement, refer to the VSL Publication "Detailing for Post-Tensioning". The arrangement shown here is common for slabs in buildings.

- Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
- Information for other concrete strengths and conditions are available from your local VSL Representative.
- Anchorage may be used with 0.5" (12.7 mm) or 6" (15.2 mm) strand.
- Use actual K when calculating H.
- L shall be the maximum permitted by the slab thickness and cover, whereas Lmin = 1.5 x K.